Bipartite Distance-Regular Graphs of Valency Three

Tatsuro Ito
Department of Mathematics
Ohio State University
Columbus, Ohio 43210
and
Department of Mathematics
Tsukuba University
Sakuramura, Ibaraki, Japan

Submitted by N. Biggs

Abstract

Bipartite distance-regular graphs of valency three are classified. There are eight such graphs, all of which have diameter less than 9 , and seven of them are distancetransitive.

1. INTRODUCTION

It has been conjectured that the diameter of any distance-regular graph is bounded by a function depending only on the valency (if the valency is not 2). In this paper we prove a very special case of this conjecture. We shall prove that every bipartite distance-regular graph of valency 3 has diameter less than 9 . We also give a complete list of these graphs. Our main theorem is:

Theorfm. Let Γ be a bipartite distance-regular graph of valency 3. Then Γ is one of the eight graphs listed in Table 1. Each of these graphs is unique up to isomorphism.

Graphs (v) and (vii) were described in [2] and [9]. Graph (iv) is a 3-fold covering of the complete bipartite graph $K_{3,3}$, graph (vi) is a double covering of O_{3} (Petersen's graph), and graph (viii) is a 3 -fold covering of graph (v).

The conjecture was suggested by the corresponding results on distancetransitive graphs. If a graph is distance-transitive, it has a large group of automorphisms, and many powerful theorems on distance-transitive graphs

TABLE 1

	Name	No. of vertices	Girth	Diameter
(i)	$K_{3.3}$	6	4	2
(ii)	Cube	8	4	3
(iii)	PG $(2,2)$	14	6	3
(iv)	$3 \cdot K_{3,3}$	18	6	4
(v)	generalized 4-gon	30	8	4
(vi)	$2 \cdot O_{3}$	20	6	5
(vii)	generalized 6 gon	126	12	6
(viii)	$3 \cdot(v)$	90	10	8

were proved by using the theory of permutation groups [4, 10]. It is a remarkable fact that although distance-regularity is a much weaker condition than distance transitivity, only one graph in the above list-that is, (vii)-is not distance-transitive.

2. PRELIMINARIES

We begin with the definition of distance-regular graphs and pick up some fundamental properties of such graphs. Readers are referred to [3].

In this paper the term "graph" means a finite simple undirected graph, and the number of vertices of Γ is denoted by n. Take a vertex u, and let $\Lambda_{i}(u)$ denote the set of vertices which have distance i from u. Take a vertex $v \in \Lambda_{i}(u)$, and let

$$
\begin{aligned}
a_{i} & =\left|\Lambda_{i}(u) \cap \Lambda_{1}(v)\right|, \\
b_{i} & =\left|\Lambda_{i+1}(u) \cap \Lambda_{1}(v)\right|, \\
c_{i} & =\left|\Lambda_{i-1}(u) \cap \Lambda_{1}(v)\right| .
\end{aligned}
$$

In general, the numbers a_{i}, b_{i}, c_{i} depend on the choice of u and v as well as i. A graph Γ is said to be distance-regular if it is connected and a_{i}, b_{i}, c_{i} are independent of the choice of u and v.

In what follows, we always assume that Γ is distance-regular. The diameter of Γ is denoted by d, and the adjacency matrix of Γ is denoted by A. The
a_{i}, b_{i}, c_{i} are called intersection numbers and satisfy the following properties:

Proposition 2.1 [3, Proposition 20.4].
(i) Each of the b_{i} 's and c_{i} 's is nonzero, and $a_{0}=0, b_{0}=\left|\Lambda_{1}(u)\right|, c_{1}=\mathbf{l}$. $\left|\Lambda_{1}(u)\right|$ is denoted by k and called the valency of Γ.
(ii) $a_{i}+b_{i}+c_{i}=k$ for $i=1,2, \ldots, d-1$, and

$$
a_{d t}+c_{d}=k .
$$

(iii) $k \geqslant b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{d-1}$, and

$$
1 \leqslant c_{1} \leqslant c_{2} \leqslant \cdots \leqslant c_{d} \leqslant k
$$

Γ is called bipartite if Γ has a partition of the vertex set into two subsets each of which contains no pair of adjacent vertices. In the case where Γ is distance-regular, Γ is bipartite if and only if all the a_{i} 's are zero.

We call the following tridiagonal matrix B of size $d+1$ the intersection matrix of Γ :

$$
B=\left(\begin{array}{cccccc}
0 & 1 & & & & \bigcirc \\
k & a_{1} & c_{2} & & & \\
& b_{1} & a_{2} & \ddots & & \\
& & b_{2} & \ddots & c_{d-1} & \\
& & & \ddots & a_{d-1} & c_{d} \\
\bigcirc & & & & b_{d-1} & a_{d}
\end{array}\right)
$$

Proposition 2.2 [3, Proposition 21.2; 6, (6.6)].
(i) The algebra spanned by A over \mathbb{C} is isomorphic to that spanned by B. In particular, A and B have the same minimal polynomial.
(ii) The minimal polynomial of B is $(x-k) F_{d}(x)$, where $F_{d}(x)$ is a polynomial of degree d determined by the three term recursion

$$
F_{i}(x)=\left(x-k+c_{i}+b_{i-1}\right) F_{i-1}(x)-b_{i-1} c_{i-1} F_{i-2}(x)
$$

with the initial condition $F_{0}(x)=1, F_{1}(x)=x+1$.
(iii) The minimal polynomial of B has roots all real and distinct.

Let θ be an eigenvalue of A, and $m(\theta)$ be the multiplicity of θ in A. Then

Proposition 2.3 [7, Appendix; 1]. If $\theta=k$, then $m(k)=1$. If $\theta \neq k$, i.e. $F_{d}(\theta)=0$, then

$$
m(\theta)=\frac{n k b_{1} b_{2} \cdots b_{d-1} c_{2} c_{33} \cdots c_{d-1}}{(k-\theta) F_{d-1}(\theta) F_{d}^{\prime}(\theta)}
$$

where $F_{d-1}(x)$ is the polynomial defined in Proposition 2 and $F_{d}^{\prime}(x)$ is the derivative of $F_{d}(x)$.

Let $\partial(u, v)$ denote the distance between u and v, and let Γ be antipodal, i.e., $\partial(v, w)=d$ for all distinct $v, w \in \Lambda_{d}(u)$. We construct the derived graph Γ^{\prime} by taking the vertices of Γ^{\prime} to be the blocks $\{u\} \cup \Lambda_{d}(u)$ in Γ, two blocks being joined in Γ^{\prime} whenever they contain adjacent vertices of Γ. Let m be the block size $\left|\Lambda_{d}(u)\right|+1$. The following fact is well known:

Proposition 2.4.
(i) Γ^{\prime} also becomes distance-regular. Its valency is k, and its diameter is the integer part of $d / 2$.
(ii) The intersection matrix of Γ^{\prime} is the same as the left top quarter of B with the $(d / 2-1, d / 2)$ entry altered to be $c_{d / 2}+b_{d / 2}$ if d is even, the $((d-1) / 2,(d-1) / 2)$ entry altered to be $a_{(d-1) / 2}+b_{(d-1) / 2}$ if d is odd.
(iii) Any two adjacent blocks in Γ^{\prime} contain m edges of Γ if $d>2$.

Put labels $1,2, \ldots, m$ on the vertices of each block. Let $d>2$. Then the m edges between two adjacent blocks induce a permutation on $\{1,2, \ldots, m\}$. Therefore the adjacency in Γ can be completely described by attaching a permutation of m letters to each edge of Γ^{\prime} and giving an orientation to each edge of Γ^{\prime}. The graph Γ described in this manner is called a covering graph of Γ^{\prime} and denoted by $m \cdot \Gamma^{\prime}$ [3, Chapter 19].

Let g, g^{\prime} be the girth of Γ, Γ^{\prime}, respectively. Take an arbitrary circuit of length g^{\prime} in $\Gamma^{\prime}: u_{0}^{\prime} u_{1}^{\prime} u_{2}^{\prime} \cdots u_{g^{\prime}}^{\prime}$ with $u_{0}^{\prime}=u_{g^{\prime}}^{\prime}$. Let z_{i} be the permutation attached to the edge $u_{i-1}^{\prime} u_{i}^{\prime}$. Then it is easy to see the following fact:

Proposition 2.5. If $g^{\prime}<g$, then $z_{1}^{\epsilon_{1}} z_{2}^{\epsilon_{2}} \cdots z_{g^{\prime}}^{\epsilon_{k^{\prime}}}$ fixes no letters, where ϵ_{i} is 1 or -1 according as the orientation is from u_{i-1}^{\prime} to u_{i}^{\prime} or not.

3. PROOF OF THE THEOREM

Let Γ be a bipartite distance-regular graph with valency 3. By Proposition 2.1, B has the form

$$
\left(\begin{array}{lllllllll}
0 & \overbrace{1}^{1} & & & & & & & \tag{1}\\
3 & 0 & 1 & & & & & & \\
& 2 & 0 & \ddots & & & & & \\
& & 2 & \ddots & 1 & & & & \\
& & & \ddots & 0 & 2 & & & \\
& & & & 2 & 0 & 2 & & \\
& & & & & 1 & 0 & \ddots & \\
& & & & & & 1 & \ddots & 2 \\
& & & & & & & \ddots & 0 \\
& & & & & & & \ddots & \\
& & & & & & & & 1
\end{array}\right)
$$

with r ones and s twos in the upper diagonal. Clearly it holds that

$$
\begin{equation*}
d=r+s+1 \tag{2}
\end{equation*}
$$

Let $k_{i}=\left|\Lambda_{i}(u)\right|$ for $i=0,1, \ldots, d$. Then by Proposition 20.4 of [3], we get

$$
\begin{align*}
k_{i} & =3 \times 2^{i-1} \quad \text { for } \quad i=1,2, \ldots, r, \\
k_{r+i} & =3 \times 2^{r-i} \quad \text { for } \quad i=1,2, \ldots, s, \tag{3}\\
k_{d} & =2^{r-s},
\end{align*}
$$

and

$$
n=\sum_{i=0}^{d} k_{i}=2\left(3 \times 2^{r}-2^{r-s}-1\right)
$$

Since k_{d} is an integer, it holds that

$$
\begin{equation*}
r \geqslant s \tag{4}
\end{equation*}
$$

In what follows, we assume that

$$
\begin{equation*}
s \geqslant 1 \tag{5}
\end{equation*}
$$

since the case $s=0$ has been finished in [5] and [9]. (The uniqueness was personally communicated by N. L. Biggs.)

Lemma 3.1. Let $(x-3) F_{d}(x)$ be the minimal polynomial of B. Then
(i) with $\lambda+\mu=x, \lambda \mu=2$,

$$
F_{d}(x)=\frac{(\lambda+1)(\mu+1)}{(\lambda-\mu)^{2}}\left[\lambda^{r+s+2}+\mu^{r+s+2}-\left(\lambda^{r}+\mu^{r}\right)\left(\lambda^{s}+\mu^{s}\right)\right]
$$

and
(ii) with $\lambda=\sqrt{2} e^{i \alpha}, \mu=\sqrt{2} e^{-i \alpha}(\alpha \in \mathbb{C})$,

$$
F_{d}(x)=\frac{-2^{(r+s) / 2}(x+3)}{2 \sin ^{2} \alpha}[\cos (r+s+2) \alpha-\cos r \alpha \cos s \alpha]
$$

Proof. By Proposition 2.2(ii), we get

$$
\begin{align*}
F_{i}(x) & =x F_{i-1}(x)-2 F_{i-2}(x) \quad \text { for } \quad i=2,3, \ldots, r, \\
F_{r+1}(x) & =(x+1) F_{r}(x)-2 F_{r-2}(x), \tag{6}\\
F_{r+i}(x) & =x F_{r+i-1}(x)-2 F_{r+i-2}(x) \quad \text { for } \quad i=2,3, \ldots, s, \\
F_{r+s+1}(x) & =(x+1) F_{r+s}(x)-2 F_{r+s-1}(x),
\end{align*}
$$

with $F_{0}(x)=1, F_{1}(x)=x+1$. If we set

$$
T=\left(\begin{array}{rr}
0 & -2 \tag{7}\\
1 & x
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

then the recursion (6) can be rewritten as

$$
\begin{equation*}
\left(F_{d-1}(x), F_{d}(x)\right)=(1, x+1) T^{r-1}(T+U) T^{s-1}(T+U) \tag{8}
\end{equation*}
$$

The eigenvectors of T are ($1, \lambda$) and ($1, \mu$) with eigenvalues λ, μ respectively,
where $\lambda+\mu=x, \lambda \mu=2$. Let $E_{i}(x)$ be the polynomial of degree $i-1$ defined by

$$
\begin{equation*}
\left(E_{i}(x), E_{i+1}(x)\right)=(0,1) T^{i} \quad \text { for } \quad i=0,1,2, \ldots \tag{9}
\end{equation*}
$$

Then since

$$
(0,1)=\frac{1}{\lambda-\mu}[(1, \lambda)-(1-\mu)]
$$

it holds that

$$
\begin{equation*}
E_{i}(x)=\frac{\lambda^{i}-\mu^{i}}{\lambda-\mu} \quad \text { for } \quad i=0,1,2, \ldots \tag{10}
\end{equation*}
$$

Since $(1, x+1)=(0,1)+(0,1) T$, the equation (8) can be solved in terms of $E_{i}(x)$ as follows:

$$
\begin{aligned}
& \left(F_{d-1}, F_{d}\right) \\
& =[(0,1)+(0,1) T] T^{r-1}(T+U) T^{s-1}(T+U) \\
& =\left[\left(E_{r-1}, E_{r}\right)+\left(E_{r}, E_{r+1}\right)\right](T+U) T^{s-1}(T+U) \\
& =\left[\left(E_{r}, E_{r+1}\right)+\left(E_{r+1}, E_{r+2}\right)+\left(E_{r}+E_{r+1}\right)(0,1)\right] T^{s-1}(T+U) \\
& =\left[\left(E_{r+s-1}, E_{r+s}\right)+\left(E_{r+s}, E_{r+s+1}\right)+\left(E_{r}+E_{r+1}\right)\left(E_{s-1}, E_{s}\right)\right](T+U) \\
& =\left[\left(E_{r+s}, E_{r+s+1}\right)+\left(E_{r+s+1}, E_{r+s+2}\right)+\left(E_{r}+E_{r+1}\right)\left(E_{s}, E_{s+1}\right)\right] \\
& \quad+\left[E_{r+s}+E_{r+s+1}+\left(E_{r}+E_{r+1}\right) E_{s}\right](0,1)
\end{aligned}
$$

Therefore we get that

$$
\begin{equation*}
F_{d-1}(x)=E_{r+s}(x)+E_{r+s+1}(x)+\left[E_{r}(x)+E_{r+1}(x)\right] E_{s}(x) \tag{11}
\end{equation*}
$$

and

$$
\begin{aligned}
F_{d}(x)= & E_{r+s}(x)+2 E_{r+s+1}(x)+E_{r+s+2}(x) \\
& +\left[E_{r}(x)+E_{r+1}(x)\right]\left[E_{s}(x)+E_{s+1}(x)\right] .
\end{aligned}
$$

By (10), the equation (11) for $F_{d-1}(x)$ becomes

$$
\begin{aligned}
F_{d-1}(x)=\frac{1}{(\lambda-\mu)^{2}} & {\left[\lambda^{r+s-1}\left(\lambda^{2}-1\right)(\lambda+2)+\mu^{r+s-1}\left(\mu^{2}-1\right)(\mu+2)\right.} \\
& \left.-\lambda^{r} \mu^{s}(\lambda+1)-\lambda^{s} \mu^{r}(\mu+1)\right]
\end{aligned}
$$

Since $\lambda+2=\lambda+\lambda \mu=\lambda(\mu+1)$ and $\mu+2=\mu(\lambda+1)$, we get that

$$
\begin{align*}
F_{d-1}(x)=\frac{1}{(\lambda-\mu)^{2}} & {\left[\lambda^{r+s}\left(\lambda^{2}-1\right)(\mu+1)+\mu^{r+s}\left(\mu^{2}-1\right)(\lambda+1)\right.} \\
& \left.-\lambda^{r} \mu^{s}(\lambda+1)-\lambda^{s} \mu^{r}(\mu+1)\right] \tag{12}
\end{align*}
$$

If we regard F_{d-1} as a function in x, r, s, i.e., $F_{d-1}(x)=G(x, r, s)$, then we know that $F_{d}(x)=G(x, r, s)+G(x, r, s+1)$ by (11), and hence by (12) we get that

$$
\begin{aligned}
F_{d}(x)=\frac{1}{(\lambda-\mu)^{2}} & {\left[\lambda^{r+s}\left(\lambda^{2}-1\right)(\lambda+1)(\mu+1)+\mu^{r+s}\left(\mu^{2}-1\right)(\lambda+1)(\mu+1)\right.} \\
& \left.-\lambda^{r} \mu^{s}(\lambda+1)(\mu+1)-\lambda^{s} \mu^{r}(\lambda+1)(\mu+1)\right]
\end{aligned}
$$

which is the desired result (i). The equation (ii) immediately follows by setting $\lambda=\sqrt{2} e^{i \alpha}, \mu=\sqrt{2} e^{-i \alpha}(\alpha \in \mathbb{C})$.

As is shown in Lemma 3.1, the minimal polynomial of B is simple enough to find the location of its roots. For $\alpha=i \pi /(d+1), i=1,2, \ldots, d$, with $d-r+s+1, F_{d}(x)$ takes $\operatorname{sign}(-1)^{i+1}$ with $x=2 \sqrt{2} \cos \alpha$ because the equation (ii) of Lemma 3.1 becomes

$$
F_{d}(x)=c\left[(-1)^{i}-\cos \frac{i r \pi}{d+1} \cos \frac{i s \pi}{d+1}\right]
$$

for some negative c, and

$$
\begin{aligned}
(-1)^{i} \cos \frac{i r \pi}{d+1} \cos \frac{i s \pi}{d+1} & =(-1)^{i} \cos \frac{i(d-s-1) \pi}{d+1} \cos \frac{i s \pi}{d+1} \\
& =\cos \frac{i(s+2) \pi}{d+1} \cos \frac{i s \pi}{d+1}<1
\end{aligned}
$$

Therefore by the intermediate-value theorem, there exists a root θ_{i} of $F_{d}(x)$
such that

$$
\theta_{i}=2 \sqrt{2} \cos \alpha_{i} \quad \text { with } \quad \frac{i \pi}{d+1}<\alpha_{i}<\frac{(i+1) \pi}{d+1}
$$

for $i=1,2, \ldots, d-1$. Since $F_{d}(x)$ has degree d, those θ_{i} together with -3 are all the roots of $F_{d}(x)$.

LEMMA 3.2. Let $\theta_{0}=3>\theta_{1}>\theta_{2}>\cdots>\theta_{d-1}>\theta_{d}=-3$ be the eigenvalues of B. Then
(i) $\theta_{i}=2 \sqrt{2} \cos \alpha_{i}$ with $\frac{i \pi}{d+1}<\alpha_{i}<\frac{(i+1) \pi}{d+1}$ for $i=1,2, \ldots, d-1$,
(ii) $\frac{\pi}{d}<\alpha_{1}<\frac{\pi}{r+1}$, and
(iii) $\theta_{i}=-\theta_{d-i}$ for $i=0,1,2, \ldots, d$.

Proof. The assertion (i) has just been proved. For the second assertion, we use the trigonometric equality

$$
\begin{align*}
-\cos (r+s+2) \alpha+ & \cos r \alpha \cos s \alpha \\
& =\sin \alpha \sin (r+s+1) \alpha+\sin (r+1) \alpha \sin (s+1) \alpha \tag{13}
\end{align*}
$$

Apply the intermediate-value theorem to the right hand side of (13). The last assertion (iii) always holds for bipartite graphs [3, Proposition 8.2], or we can directly verify (iii) by Lemma 3.1.

Lemma 3.3. Let θ be an eigenvalue of A with $\theta \neq \pm 3$. The multiplicity of θ in A is given by the formula

$$
m(\theta)=12 n \frac{\sin ^{2} \alpha}{1+8 \sin ^{2} \alpha} \frac{1}{r+1+\left(2 s \sin ^{2} \alpha+\sin ^{2} s \alpha\right) / S(\alpha)}
$$

where $\theta=2 \sqrt{2} \cos \alpha$ and

$$
S(\alpha)=\frac{1}{4}\left|\varphi^{s}+1-\frac{2}{\varphi}\right|^{2}=2 \sin ^{2}(s+1) \alpha-\sin ^{2} s \alpha+2 \sin ^{2} \alpha
$$

with $\varphi=\lambda / \mu=e^{2 i \alpha}$.

Proof. We first notice that θ is also an eigenvalue of B and hence can be written as $\theta=2 \sqrt{2} \cos \alpha$ with $0<\alpha<\pi$. Set

$$
\begin{equation*}
\varphi=\frac{\lambda}{\mu}=\frac{\lambda^{2}}{2}, \quad \chi=\frac{\mu}{\lambda}=\frac{\mu^{2}}{2} \quad \text { with } \quad \lambda=\sqrt{2} e^{i \alpha}, \quad \mu=\sqrt{2} e^{-i \alpha}, \tag{14}
\end{equation*}
$$

i.e.,

$$
\varphi+\chi=\frac{\theta^{2}-4}{2}, \quad \varphi \chi=1
$$

We shall calculate $m(\theta)$ by using Proposition 2.3.
The equation (12) is rewritten as follows:

$$
\begin{aligned}
F_{d-1}(\theta)=\frac{1}{(\lambda-\mu)^{2}} & \left\{(\lambda+1)\left[\lambda^{r+s}\left(\lambda^{2}-1\right)+\mu^{r+s}\left(\mu^{2}-\mathrm{I}\right)-\lambda^{r} \mu^{s}-\lambda^{s} \mu^{r}\right]\right. \\
& \left.-(\lambda-\mu)\left[\lambda^{r+s}\left(\lambda^{2}-1\right)-\lambda^{s} \mu^{r}\right]\right\}
\end{aligned}
$$

$\lambda^{r+s}\left(\lambda^{2}-1\right)+\mu^{r+s}\left(\mu^{2}-1\right)-\lambda^{r} \mu^{s}-\lambda^{s} \mu^{r}=0$ by Lemma $3.1(i)$, and so

$$
F_{d-1}(\theta)=\frac{1}{\lambda-\mu}\left[-\lambda^{r+s}\left(\lambda^{2}-1\right)+\lambda^{s} \mu^{r}\right]
$$

i.e.,

$$
\begin{equation*}
F_{d-1}(\theta)=\frac{\lambda^{r+s}}{\lambda-\mu}\left[\chi^{r}+1-2 \varphi\right] \tag{15}
\end{equation*}
$$

By (14), the derivatives of φ and χ with respect to x at $x=\theta$ satisfy

$$
\varphi^{\prime}+\chi^{\prime}=\theta, \quad \varphi^{\prime} \chi+\varphi \chi^{\prime}=0 .
$$

Therefore

$$
\varphi^{\prime}=\frac{\varphi \theta}{\varphi-\chi} \quad \text { and } \quad \chi^{\prime}=\frac{-\chi \theta}{\varphi-\chi}
$$

Since $\theta /(\varphi-\chi)=2(\lambda+\mu) /\left(\lambda^{2}-\mu^{2}\right)=2 /(\lambda-\mu)$, it holds that

$$
\begin{equation*}
\varphi^{\prime}=\frac{2 \varphi}{\lambda-\mu} \quad \text { and } \quad \chi^{\prime}=\frac{-2 \chi}{\lambda-\mu} . \tag{16}
\end{equation*}
$$

We rewrite the equation of Lemma 3.1(i) as follows:

$$
\begin{equation*}
F_{d}(x)=\frac{(\lambda+1)(\mu+1) \mu^{r+s}}{(\lambda-\mu)^{2}}\left[2 \varphi^{r+s+1}-\varphi^{r+s}-\varphi^{r}-\varphi^{s}-1+2 \chi\right] \tag{17}
\end{equation*}
$$

By (16)

$$
\begin{aligned}
& F_{d}^{\prime}(\theta)=\frac{(\lambda+1)(\mu+1) \mu^{r+s}}{(\lambda-\mu)^{2}} \frac{2}{\lambda-\mu}\left[2(r+s+1) \varphi^{r+s+1}-(r+s) \varphi^{r+s}\right. \\
& \left.-r \varphi^{r}-s \varphi^{s}-2 \chi\right] \\
& =\frac{(\lambda+1)(\mu+1) \mu^{r+s}}{(\lambda-\mu)^{2}} \frac{2}{\lambda-\mu}\left[(r+s)\left\{2 \varphi^{r+s+1}-\varphi^{r+s}-\varphi^{r}-\varphi^{s}-1+2 \chi\right\}\right. \\
& \left.+\left\{2 \varphi^{r+s+1}+s \varphi^{r}+r \varphi^{s}+r+s-2(r+s+1) \chi\right\}\right] .
\end{aligned}
$$

$2 \varphi^{r+s+1}-\varphi^{r+s}-\varphi^{r}-\varphi^{s}-1+2 \chi=0$, since θ is a root of (17), and hence it holds that

$$
F_{d}^{\prime}(\theta)=\frac{2(\lambda+1)(\mu+1) \mu^{r+s}}{(\lambda-\mu)^{3}}\left[2 \varphi^{r+s+1}+s \varphi^{\tau}+r \varphi^{s}+r+s-2(r+s+1) \chi\right],
$$

i.e.,

$$
\begin{align*}
F_{d}^{\prime}(\theta)= & \frac{2(\lambda+1)(\mu+1) \mu^{r+s}}{(\lambda-\mu)^{3}} \\
& \cdot\left[r\left(\varphi^{s}+1-2 \chi\right)+s\left(\varphi^{r}+1-2 \chi\right)+2\left(\varphi^{r+s+1}-\chi\right)\right] \tag{18}
\end{align*}
$$

The product of (15) and (18) is

$$
\begin{align*}
F_{d-1}(\theta) F_{d}^{\prime}(\theta)= & \frac{2^{r+s+1}(\lambda+1)(\mu+1)}{(\lambda-\mu)^{4}}\left(\chi^{r}+1-2 \varphi\right)\left(\varphi^{s}+1-2 \chi\right) \\
& \times\left[r+\frac{s\left(\varphi^{r}+1-2 \chi\right)}{\varphi^{s}+1-2 \chi}+\frac{2\left(\varphi^{r+s+1}-\chi\right)}{\varphi^{s}+1-2 \chi}\right] \tag{19}
\end{align*}
$$

Sublemma. It holds that

$$
\begin{align*}
&\left(\chi^{r}+1-2 \varphi\right)\left(\varphi^{s}+1-2 \chi\right)--2(\varphi+\chi-2)-8 \sin ^{2} \alpha \tag{20}\\
& \frac{\varphi^{r}+1-2 \chi}{\varphi^{s}+1-2 \chi}=\frac{-2(\varphi+\chi-2)}{\left|\varphi^{s}+1-2 \chi\right|^{2}}=\frac{8 \sin ^{2} \alpha}{\left|\varphi^{s}+1-2 \chi\right|^{2}} \tag{21}\\
& \frac{\varphi^{r+s+1}-\chi}{\varphi^{s}+1-2 \chi}=-\frac{\left(\varphi^{s+1}+\chi^{s+1}-2\right)+(\varphi+\chi-2)}{\left|\varphi^{s}+1-2 \chi\right|^{2}} \\
&=\frac{4 \sin ^{2}(s+1) \alpha+4 \sin ^{2} \alpha}{\left|\varphi^{s}+1-2 \chi\right|^{2}} \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{4}\left|\varphi^{s}+1-2 \chi\right|^{2}=2 \sin ^{2}(s+1) \alpha-\sin ^{2} s \alpha+2 \sin ^{2} \alpha \tag{23}
\end{equation*}
$$

Proof. We put θ in x of (17) and get

$$
2 \varphi^{r+s+1}-\varphi^{r+s}-\varphi^{r}-\varphi^{s}-1+2 \chi=0 .
$$

Solve this identity for φ^{τ}. Then we get

$$
\begin{equation*}
\varphi^{r}=-\frac{1}{\varphi^{s}} \frac{\varphi^{s}+1-2 \chi}{\chi^{s}+1-2 \varphi} . \tag{24}
\end{equation*}
$$

Put (24) in $\varphi^{r}+1-2 \chi$. Then we get

$$
\begin{equation*}
\varphi^{r}+1-2 \chi=\frac{-2(\varphi-2+\chi)}{\chi^{s}+1-2 \varphi} \tag{25}
\end{equation*}
$$

If we take complex conjugates, φ and χ are interchanged and so the identity (25) becomes (20). The identity (21) immediately follows from (25) divided by $\varphi^{s}+1-2 \chi$. By (24), we get

$$
\varphi^{r+s+1}=-\varphi \frac{\varphi^{s}+1-2 \chi}{\chi^{s}+1-2 \varphi},
$$

and so

$$
\frac{\varphi^{r+s+1}-\chi}{\varphi^{s}+1-2 \chi}=-\frac{\varphi}{\chi^{s}+1-2 \varphi}-\frac{\chi}{\varphi^{s}+1-2 \chi}
$$

The identity (22) follows from this. For each $i \in \mathbb{Z}$,

$$
\begin{equation*}
2-\left(\varphi^{i}+\chi^{i}\right)=2-2 \cos 2 i \alpha=4 \sin ^{2} i \alpha \tag{26}
\end{equation*}
$$

Therefore each of (20), (21), (22), (23) is expressed in terms of trigonometric functions. For example,

$$
\begin{aligned}
\left|\varphi^{s}+1-2 \chi\right|^{2} & =\left(\varphi^{s}+1-2 \chi\right)\left(\chi^{s}+1-2 \varphi\right) \\
& =2\left(2-\varphi^{s+1}-\chi^{s+1}\right)-\left(2-\varphi^{s}-\chi^{s}\right)+2(2-\varphi-\chi) \\
& =8 \sin ^{2}(s+1) \alpha-4 \sin ^{2} s \alpha+8 \sin ^{2} \alpha,
\end{aligned}
$$

and we get (23). This completes the proof of the Sublemma.
Since $(\lambda+1)(\mu+1)=\theta+3$ and $(\lambda-\mu)^{2}=\theta^{2}-8=-8 \sin ^{2} \alpha$, the identity (19) becomes

$$
\begin{align*}
F_{d-1}(\theta) F_{d}^{\prime}(\theta) & =\frac{2^{r+s+1}(\theta+3)}{8 \sin ^{2} \alpha}\left[r+\frac{2 s \sin ^{2} \alpha}{S(\alpha)}+\frac{2 \sin ^{2}(s+1) \alpha+2 \sin ^{2} \alpha}{S(\alpha)}\right] \\
& =\frac{2^{r+s+1}(\theta+3)}{8 \sin ^{2} \alpha}\left[r+1+\frac{2 s \sin ^{2} \alpha+\sin ^{2} s \alpha}{S(\alpha)}\right] \tag{27}
\end{align*}
$$

with $S(\alpha)=\frac{1}{4}\left|\varphi^{s}+1-2 \chi\right|^{2}$. By Proposition 2.3,

$$
\begin{equation*}
m(\theta)=\frac{3 n \times 2^{r+s}}{(3-\theta) F_{d-1}(\theta) F_{d}^{\prime}(\theta)} \tag{28}
\end{equation*}
$$

This together with (27) proves Lemma 3.3.
Lemma 3.4. Let $\theta_{0}=3>\theta_{1}>\theta_{2}>\cdots>\theta_{d-1}>\theta_{d}=-3$ be the eigenvalues of A as in Lemma 3.2. If $r \geqslant 8$, then there exists some $\theta_{i}(2 \leqslant i \leqslant d-2)$ such that
(i) $8-\theta_{i}^{2}=8 \sin ^{2} \alpha_{i}>1, \quad$ and
(ii) $m\left(\theta_{1}\right)=m\left(\theta_{i}\right)$.

Proof. Since $F_{d}(x)$ is monic with integer coefficients, all the θ_{i} are algebraic integers. Therefore the product

$$
\begin{equation*}
\Pi\left(8-\theta_{i}^{2}\right) \tag{29}
\end{equation*}
$$

over all the θ_{i} algebraic conjugate to θ_{1} is an integer. Since $8 \quad \theta_{i}^{2}=8 \sin ^{2} \alpha_{i}>0$ by Lemma 3.2, the product (29) is positive and hence greater than or equal to 1, whereas by Lemma 3.2(ii)

$$
8-\theta_{1}^{2}=8 \sin ^{2} \alpha_{1}<8 \sin ^{2} \frac{\pi}{r+1}<1 \quad \text { if } \quad r \geqslant 8
$$

This implies that there exists some θ_{i} algebraic conjugate to θ_{1} such that $8-\theta_{i}^{2}=8 \sin ^{2} \alpha_{i}>1$. Since θ_{i} is algebraic conjugate to θ_{1}, their multiplicities in A are the same, i.e., $m\left(\theta_{1}\right)-m\left(\theta_{i}\right)$.

Lemma 3.5. Let $\theta=2 \sqrt{2} \cos \alpha(0<\alpha<\pi)$ be an eigenvalue of A. Then
(i) $m(\theta)<\frac{12 n}{r+1} \frac{\sin ^{2} \alpha}{1+8 \sin ^{2} \alpha}$, and
(ii) $m(\theta)>\frac{3 n}{4} \frac{1}{r+1+(s+4)(3+2 \sqrt{2})}$ if $8 \sin ^{2} \alpha>1$.

Proof. The first assertion is trivial by Lemma 3.3. To bound $m(\theta)$ from below, we estimate $S(\alpha)$. First we observe that

$$
\left|1-\frac{2}{\varphi}\right|=|1-2 \cos 2 \alpha+2 \sqrt{-1} \sin 2 \alpha|=\sqrt{1+8 \sin ^{2} \alpha}
$$

Therefore

$$
\begin{aligned}
S(\alpha) & =\frac{1}{4}\left|\varphi^{s}+1-\frac{2}{\varphi}\right|^{2} \\
& \geqslant \frac{1}{4}\left(\sqrt{1+8 \sin ^{2} \alpha}-1\right)^{2}
\end{aligned}
$$

and so

$$
\begin{equation*}
\frac{1}{S(\alpha)} \leqslant \frac{4\left(\sqrt{1+8 \sin ^{2} \alpha}+1\right)^{2}}{\left(8 \sin ^{2} \alpha\right)^{2}} \tag{30}
\end{equation*}
$$

Replace $1 / S(\alpha)$ in the formula of Lemma 3.3 by the inequality (30). Then we
get

$$
m(\theta) \geqslant 12 n \frac{\sin ^{2} \alpha}{1+8 \sin ^{2} \alpha} \frac{1}{r+1+\frac{4\left(2 s \sin ^{2} \alpha+1\right)\left(\sqrt{1+8 \sin ^{2} \alpha}+1\right)^{2}}{\left(8 \sin ^{2} \alpha\right)^{2}}}
$$

The right hand side of the above inequality increases with $\sin ^{2} \alpha$, and hence if $8 \sin ^{2} \alpha>1$, we get

$$
m(\theta)>12 n \frac{\frac{1}{8}}{1+1} \frac{1}{r+1+(s+4)(\sqrt{2}+1)^{2}}
$$

which is the desired result.

Lemma 3.6. If $r \geqslant 8$, then

$$
s+4>\frac{r+1}{2(3+2 \sqrt{2})}\left(\frac{1}{8 \sin ^{2} \pi /(r+1)}-1\right)
$$

Proof. Take θ_{i} as in Lemma 3.4. Then by Lemma 3.5,

$$
m\left(\theta_{1}\right)<\frac{12 n}{r+1} \frac{1}{8+\frac{1}{\sin ^{2} \pi /(r+1)}}
$$

and

$$
m\left(\theta_{i}\right)>\frac{12 n}{16} \frac{1}{r+1+(s+4)(3+2 \sqrt{2})} .
$$

[We have used the inequality $\alpha_{1}<\pi /(r+1)$ in Lemma 3.2 as well.] Therefore

$$
1=\frac{m\left(\theta_{i}\right)}{m\left(\theta_{1}\right)}>\frac{1}{16}\left(8+\frac{1}{\sin ^{2} \pi /(r+1)}\right) \frac{1}{1+\frac{s+4}{r+1}(3+2 \sqrt{2})} .
$$

Solve this inequality for $s+4$. Then we get the desired result.

By (4), $r \geqslant s$, and the previous lemma,

$$
r+4>\frac{r+1}{2(3+2 \sqrt{2})}\left(\frac{1}{8 \sin ^{2} \pi /(r+1)}-1\right)
$$

i.e.

$$
\begin{equation*}
1>\frac{1}{2(3+2 \sqrt{2})}\left(\frac{1}{8 \sin ^{2} \pi /(r+1)}-1\right)-\frac{3}{r+1} \tag{31}
\end{equation*}
$$

The right hand side of (31) increases with $r+1$ and becomes greater than 1 when $r=32$. Therefore we get

$$
\begin{equation*}
r \leqslant 31 \tag{32}
\end{equation*}
$$

The admissible (r, s) for Lemma 3.6 are as follows:

r	31	30	29	28	27	26	25	
$r \geqslant s \geqslant$	29	26	23	21	18	16	13	
r	24	23	22	21	20	19	18	17
$r \geqslant s \geqslant$	11	10	8	6	5	4	2	1

and all (r, s) with $16 \geqslant r \geqslant 1$ and $r \geqslant s \geqslant 1$.
In order to eliminate the remaining finite cases listed in (33), we count the number of circuits of length $2(r+1), 2(r+2)$, and $2(r+3)$. Let

$$
\begin{equation*}
c_{q} \text { be the number of circuits of length } q \text {. } \tag{34}
\end{equation*}
$$

Lemma 3.7. It holds that
(i) $c_{2(r+1)}=3 \times 2^{r-1} \times n / 2(r+1)$,
(ii) $c_{2(r+2)}=\left\{\begin{array}{ll}3 \times 2^{r} \times n / 2(r+2) & \text { if } s \geqslant 2 \\ 3 \times 2^{r+1} \times n / 2(r+2) & \text { if } s=1 \text { and } r \geqslant 2\end{array}\right\}$, and
(iii) $c_{2(r+3)}= \begin{cases}3 \times 7 \times 2^{r-1} \times n / 2(r+3) & \text { if } s \geqslant 3 \text { and } r \geqslant 4, \\ 3 \times 11 \times 2^{r-1} n / 2(r+3) & \text { if } s=2 \text { and } r \geqslant 4, \\ 3 \times 5 \times 2^{r-1} n / 2(r \mid 3) & \text { if } s=1 \text { and } r \geqslant 4 .\end{cases}$

Proof. Count in two ways the number of pairs (u, C), where C is a circuit of length $2(r+1)$ containing u. Then we get the formula (i).

Count in two ways the number of pairs (u, C_{1}) and triples (u, v, C_{2}), where C_{1} is a circuit of length $2(r+2)$ containing $u,\{u, v\}$ is an edge, and C_{2}
is a circuit of length $2(r+1)$ containing v but not u. Then we get the formula (ii).

Count in two ways the number of pairs (u, C_{1}), triples (u, v, C_{2}), and quadruples $\left(u, v, w, C_{3}\right.$), where C_{1} is a circuit of length $2(r+3)$ containing u, $\{u, v\}$ and $\{v, w\}$ are edges, C_{2} is a circuit of length $2(r+2)$ containing v but not u, and C_{3} is a circuit of length $2(r+1)$ containing w but not u or v. Then we get the formula (iii).

The (r, s) in (33) which satisfy the integer condition of Lemma 3.7 are

r	30	23	15	12	7	6	5	4	2	1
s	29	12	8	11	4	5,2	3	3	2,1	1

For (r, s) in (35), we check the feasibility condition, i.e. $m(\theta) \in \mathbb{Z}$, and get the θ which violate the feasibility. They are listed in Table 2, where $\omega=\varphi+\chi=\left(\theta^{2}-4\right) / 2$.

All the equations for ω are irreducible in the list. We take a primitive root of the cyclotomic equations for φ. Those ω, φ determine θ^{2}, and we can see from the formula for $m(\theta)$ that the value of θ^{2} is enough to determine $m(\theta)$ (or by Proposition 8.2 of [3], it holds that $m(\theta)=m(-\theta)$ for every bipartite graph). Those $m(\theta)$ are not integers [in fact they are not even rational numbers, except the case $(r, s)=(5,3),(6,2)]$, which is a contradiction.

Thus the possible parameters are only

r	4	2	2	1
s	3	2	1	1

For each of the above parameters (r, s), we shall give a brief proof of the

TABLE 2

(r, s)	θ
$(5,3)$	$\varphi^{3}-1=0$
$(6,2)$	$\varphi^{3}-1=0$
$(6,5)$	$2 \omega^{3}+\omega^{2}-5 \omega-1=0$
$(7,4)$	$2 \omega^{4}+\omega^{3}-7 \omega^{2}-2 \omega+5=0$
$(12,11)$	$\varphi^{12}-1=0$
$(15,8)$	$\varphi^{8}-1=0$
$(23,12)$	$\varphi^{12}-1=0$
$(30,29)$	$\varphi^{30}-1=0$

existence and uniqueness of Γ. We first observe that Γ is antipodal. This is because $\partial(v, w) \geqslant 2(s+1)$ for all distinct $v, w \in \Lambda_{d}(u)$ and $2(s+1)=r+s$ $+\mathbf{1}=d$ for (r, s) in the list (36) (if $r=s$, then $\left|\Lambda_{d}(u)\right|=1$ and there is nothing to prove). By Proposition 2.4, the intersection matrix of the derived graph Γ^{\prime} is

$$
B^{\prime}=\left(\begin{array}{ll}
0 & 1 \tag{37}\\
3 & 2
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & \\
3 & 0 & 3 \\
& 2 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & \\
3 & 0 & 1 \\
& 2 & 2
\end{array}\right),\left(\begin{array}{lllll}
0 & 1 & & & \\
3 & 0 & 1 & & \\
& 2 & 0 & 1 & \\
& & 2 & 0 & 3 \\
& & & 2 & 0
\end{array}\right)
$$

TABLE 3

$t=(1,2)$
(ii) $2 \cdot K_{4} \cong$ cube

1	1	$\mathbf{1}$
1	Z	Z^{-1}
1	Z^{-1}	Z

$$
z=(1,2,3)
$$

(iv) $\mathbf{3} \cdot \boldsymbol{K}_{3,3}$

$t=(1,2)$
(vi) $2 . O_{3}$

1	1	1												
1			1	1										
1					1	1								
	1						1	1						
	1								1	1				
		1									1	1		
		1											1	1
			1				Z				Z^{-1}			
			1							Z^{-1}				Z
				1					Z				Z^{-1}	
				1				Z^{-1}				Z		
					1		Z^{-1}						Z	
					1					Z		Z^{-1}		
						1			Z^{-1}		Z			
						1		Z						Z^{-1}

(viii) $3 \cdot$ (Tutte's 8-cage) $\quad z=(1,2,3)$
for $(r, s)=(1,1),(2,1),(2,2),(4,3)$, respectively. The distance-regular graph Γ^{\prime} is uniquely determined to be $K_{4}, K_{3,3}, O_{3}$ (Petersen's graph) and the generalized 4 -gon (Tutte's 8 -cage), respectively. In each case, it holds that $g^{\prime}<g=2(r+1)$. Therefore $z_{1}^{\epsilon_{1}} z_{2}^{\epsilon_{2}} \cdots z_{g^{\prime}}^{\epsilon_{g^{\prime}}}$ in Proposition 2.5 is fixed-point-free for every circuit of length g^{\prime}. This determines Γ uniquely as shown in Table 3 (cf. [8]). In the diagrams in the table, the orientations are from one half to the other if Γ^{\prime} is bipartite and arbitrary if $m=2$. The diagram for (vi) indicates that the identity permutation is attached to each "spoke" and the transposition $(1,2)$ is attached to everywhere else (cf. [3, p. 152]).

The author wishes to acknowledge the presentation of this problem by E. Bannai.

REFERENCES

1 E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Univ. Tokyo Sect. IA Math 20:191-208 (1973).
2 C. T. Benson, Minimal regular graphs of girth eight and twelve, Canad. J. Math. 18:1091-1094 (1966).
3 N. L. Biggs, Algebraic Graph Theory, Cambridge U.P., 1974.
4 N. L. Biggs and D. H. Smith, On trivalent graphs, Bull. London Math. Soc. 3:155-158 (1971).
5 W. Feit and G. Higman, The non-existence of certain generalized polygons, J. Algebra 1:114-131 (1964).
6 D. G. Higman, Intersection matrices for finite permutation groups, J. Algebra 6 22-42 (1967).
7 T. Ito, Primitive rank 5 permutation groups with two doubly transitive constituents of different sizes, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21:271-277 (1974).

8 T. Ito, On a graph of O'Keefe and Wong, J. Graph Theory 5:87-94 (1981).
9 R. R. Singleton, On minimal graphs of maximum even girth, J. Combin. Theory 1:306-332 (1966).
10 W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43:459-474 (1947).

