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ABSTRACT 

Bipartite distance-regular graphs of valency three are classified. There are eight 
such graphs, all of which have diameter less than 9, and seven of them are distance- 
transitive. 

1. INTRODUCTION 

It has been conjectured that the diameter of any distance-regular graph is 
bounded by a function depending only on the valency (if the valency is not 
2). In this paper we prove a very special case of this conjecture. We shall 
prove that every bipartite distance-regular graph of valency 3 has diameter 
less than 9. We also give a complete list of these graphs. Our main theorem is: 

THEOREM. Let I? be a bipartite distance-regular graph of valency 3. Then 
r is one of the eight graphs listed in Table 1. Each of these graphs is unique 

up to isomorphism. 

Graphs (v) and (vii) were described in [2] and [9]. Graph (iv) is a 3-fold 
covering of the complete bipartite graph Ks,,, graph (vi) is a double covering 
of 0, (Petersen’s graph), and graph (viii) is a 3-fold covering of graph (v). 

The conjecture was suggested by the corresponding results on distance- 
transitive graphs. If a graph is distance-transitive, it has a large group of 
automorphisms, and many powerful theorems on distance-transitive graphs 
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TABLE 1 

Ill, 
(iii) 

(iv) 

r:, 
(vii) 
(viii) 

Name No. of vertices Girth 

k’:,,:, 6 4 
Cube 8 4 

W2,2) 14 6 

3 K:,,., 18 6 
generalized 4-gon 30 8 
2 0, 20 6 
generalized 6gon 126 12 

3.(u) 90 10 

Diameter 

were proved by using the theory of permutation groups [4, 101. It is a 
remarkable fact that although distance-regularity is a much weaker condition 
than distance transitivity, only one graph in the above list-that is, (vii)-is 
not distance-transitive. 

2. PRELIMINARIES 

We begin with the definition of distance-regular graphs and pick up some 
fimdamental properties of such graphs. Readers are referred to [3]. 

In this paper the term “graph” means a finite simple undirected graph, 
and the number of vertices of r is denoted by n. Take a vertex U, and let 
A,(u) denote the set of vertices which have distance i from u. Take a vertex 
vial, and let 

In general, the numbers a,, b,, ci depend on the choice of u and v as well as i. 

A graph r is said to be distance-regular if it is connected and a i, hi, ci are 
independent of the choice of u and v. 

In what follows, we always assume that r is distance-regular. The diame- 
ter of lY is denoted by d, and the adjacency matrix of r is denoted by A. The 
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a i, bi, ci are called intersection numbers and satisfy the following properties: 

PROPOSITION 2.1 13, Proposition 20.41. 

(i) Each ofthe hi’s and ci’s is rwnzero, and a,=O, b,=IA,(u)l, cr=l. 
]A r( u) 1 is denoted by k and called the valency of l?. 

(ii) a, + bi + ci = k for i = 1,2,. . . , d - 1, and 

(iii) k 2 b, 3 b, 2 . . . a bCIPl, and 

r is called bipartite if I has a partition of the vertex set into two subsets 
each of which contains no pair of adjacent vertices. In the case where I’ is 
distance-regular, I is bipartite if and only if ah the aj’s are zero. 

We call the following tridiagonal matrix B of size d + 1 the intersection 

matrix of r: 

B= 

0 1 0 
k a1 cz 

b, a2 ‘. 

b, . . Cd-1 

udpl cd 

0 bd-l ad 

PROPOSITION 2.2 [3, Proposition 21.2; 6, (S.S)]. 

(i) The algebra spanned by A over C is isomorphic to that spanned by B. 
In particular, A and B have the same minimal polynomial. 

(ii) The minimal polynomial of B is (x - k jFd(x), where F,(x) is a 

polynomial of degree d determined by the three term recursion 

with the initial condition F,(x) = 1, F,(x) = x + 1. 
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(iii) The minimal polynomial of B has roots all real and distinct. 

Let 8 be an eigenvalue of A, and nz( 6’) be the multiplicity of 0 in A. Then 

PROPOSITION 2.3 [7, Appendix; 11. Zf 0 = k, then m(k) = 1. Zf 9 # k, i.e. 
Fd(0) = 0, then 

nkb,b,. . . b,,._,c,c,. . . c~,-~ 

m(B) = (k - B)F,,_,(B)Z$(B) ’ 

where F,,_,(x) is the polynomial defined in Proposition 2 and F,‘(x) is the 

derivative of F,,(x). 

Let a(u, v) denote the distance between u and 0, and let P be antipodal, 

i.e., a( v, w) = d for all distinct 0, w E A,!(u). We construct the derived graph 

r’ by taking the vertices of P’ to be the blocks {u} Un,( u) in P, two blocks 
being joined in P’ whenever they contain adjacent vertices of P. Let m be the 
block size 1 A,,( u ) 1-t 1. The following fact is well known: 

PROPOSITION 2.4. 

(i) I” also becomes distance-regular. Its valency is k, and its diameter is 

the integer part of d /2. 

(ii) The intersection matrix of r’ is the same as the left top quarter of B 

with the (d/2 - 1, d/2) entry altered to be c<,,~ + bd12 if d is even, the 

((d - 1)/2,(d - 1)/2) entry altered to be a(,, 1j,2 + bCd_1j,2 if d is odd. 
(iii) Any two adjacent blocks in r’ contain m edges of r if d > 2. 

Put labels 1,2,. . . , m on the vertices of each block. Let d > 2. Then the m 

edges between two adjacent blocks induce a permutation on { 1,2,. . . , rn}. 
Therefore the adjacency in P can be completely described by attaching a 
permutation of m letters to each edge of P’ and giving an orientation to each 
edge of l?. The graph P described in this manner is called a covering graph of 
I? and denoted by m . I? [3, Chapter 191. 

Let g, g’ be the girth of P, P’, respectively. Take an arbitrary circuit of 
length g’ in I?‘: ZL~U;U;. . . u;, with u[, = u;,. Let zi be the permutation 
attached to the edge ui_ ru:. Then it is easy to see the following fact: 

PROPOSITION 2.5. Zf g’c g, then zz’z?. . . .z$ fixes no letters, where ei is 
1 or - 1 according as the orientation is from ui_r to U; or not. 
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3. PROOF OF THE THEOREM 

Let l? be a bipartite distance-regular graph with valency 3. By Proposition 
2.1. B has the form 

0 
3 

0 

I s 

1 
0 1 

2 0 . . 

2 . . 1 

0 2 

2 0 2 

1 0 ‘, 

1 *, 2 

0 

1 

0 

3 

0 

(1) 

with r ones and s Taos in the upper diagonal. Clearly it holds that 

d=r+s+l. (2) 

Let ki=(Ai(u)l for i=O,l,..., d. Then by Proposition 20.4 of [3], we get 

ki =3X2’-’ for i=1,2 ,..., r, 

k,+i =3X2’-’ for i=1,2 ,..., s, (3) 

k, = 2’7, 

and 

n= ; kj=2(3x2’-2’-“-1). 
i=O 

Since k, is an integer, it holds that 

ras. (4) 
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In what follows, we assume that 

Sal, (5) 

since the case s = 0 has been finished in [5] and [9]. (The uniqueness was 
personally communicated by N. L. Biggs.) 

LEMMA 3.1. Let (x -3)&(x) be the minimal polynomial of B. Then 

(i) with X + p =x, hp = 2, 

ei(x)= (h-tl)(P-tl) [~+S+2+pr+S+2_(~+pT)(~+pS)] 

(A 4” 

and 
(ii) with h =fieta, p =fieCia (aE c), 

F,(x) = 
-2(r+W2(X +3) 

2 sin2 ff 
[cos(r+s+2)a-cosracosscu]. 

Proof. By Proposition 2.2(ii), we get 

Fi(x) = XI!_,(X)--2F,_,(x) for i-2,3 ,..., r, 

F,+,(x) = (x +Wr(+2F,-,(d, (6) 

F,+i(x)=~F~+i~,(x)-2F,+i~2(~) for i-2,3 ,..., s, 

F r+s+l(4 =(x +Wr+s(+2F,+sA4 

with F,(x) = 1, F1( x) = x + 1. If we set 

T=(o -‘,) and I!=(: y), (7) 

then the recursion (6) can be rewritten as 

(F,_,(x),F,(x))=(l,x+l)T’-‘(T+U)T”-’(T+U). (8) 

The eigenvectors of Tare (1, A) and (1, p) with eigenvalues A, p respectively, 
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where X + p = x, Xp = 2. Let E,(x) be the polynomial of degree i - 1 defined 

by 

(E,(r),Ei+l(x>)=(~,l)~’ for i=o,1,2 ,.... (9) 

Then since 

it holds that 

2 -pi 

Eib) =x for i=O,1,2 ,.... (10) 

Since (1, x + 1) = (0,l) + (0, l)T, the equation (8) can be solved in terms of 
Ei(x) as follows: 

G%1* 4) 

=[(o,l)+(o,l)T]T’-‘(T+U)T”P’(T+U) 

= [@PI> E,)+(E,, E,+,)](T + U)T”-‘(T + u) 

=[(ErJG+l)+(E,+l, E,+,)+(E,+E,+,)(OJ)]Z’-‘(T+U) 

= [(E,+,4 E,+,)-t(E,+,, Er+s+l >+(E,+E,+,)(E,-,,E,~)I(T+U) 

=[(E,+s,E,+,+1)+(E,+,+1,E rts+2)+@r +Er+d(Es~ Es+Al 

+ [Er+s + &+,+I +(Er+E,+,)E,l(0J). 

Therefore we get that 

Lb) =Er+sb)+Er+s+l (x)-t [Em+ Er+,WlE,b) (11) 

and 
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By (lo), the equation (11) for Fd_r( x) becomes 

Lb) = 1 [X’fs-’ 

(h42 
(Xz-1)(A+2)+~L’+“-‘(+l)(~+2) 

-xjL”(h+l)-Xsll,r(p+11)]. 

Since A + 2 = X + hp = X( p + 1) and p + 2 = p( X + l), we get that 

Fd-164 = l [x+“(h~-l)(~+l)+~~+~((1a-l)(h+1) 
wP)2 

-xj.&“(h+l)-X”$(~+l)]. 02) 

If we regard Fd_i as a function in r, r, s, i.e., Fd_r(x) = G(x, r, s), then we 
know that Q(x) = G(x, r, s)+ G(x, r, s + 1) by (ll), and hence by (12) we 
get that 

which is the desired result (i). The equation (ii) immediately follows by setting 
A =JZeia, p=QeCin (CuEC). n 

As is shown in Lemma 3.1, the minimal polynomial of B is simple enough 
to find the location of its roots. For (Y = i~/( d + l), i = 1,2,. . . ,d, with 
d = r + s -t 1, F,(x) takes sign (- 1)’ ‘+’ with x = 2@cos (Y because the equa- 
tion (ii) of Lemma 3.1 becomes 

ism F,(r)=c[(-l)i-cos~cos- 
d-t1 I 

for some negative c, and 

is77 (-l)icos-+oS-&=(-l)icos~(d-j~;l)~cOs- dtl 

i(s+2)a 

= ‘OS d $1 

isa <1 
coSd . 

Therefore by the intermediate-value theorem, there exists a root 13, of q,(x) 
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such that 

e, = s/iicos ai 

for i = 1 2 , , . . . , d - 1. Since 2$(x) has degree d, those 19~ together with -3 are 
all the roots of Fd(x). 

LEMMA 3.2. Let 8,=3>8,>t?,>... >Od-I>ed= -3 be the eigen- 
values of B. Then 

(i) 0, = 2ficos t.xi with - 
dZ:l 

~a~<$$$ fori=1,2 ,..., d-l, 

(ii) 1<~1< 
7f 

-, and 

(iii) ji= --O~~,-$ri=O,1,2 ,..., d. 

Proof. The assertion (i) has just been proved. For the second assertion, 
we use the trigonometric equality 

-cos(r+s+2)cu+cosrcucosscu 

=sin(Ysin(r+s+l)a+sin(r+l)cusin(s+l)a. 

03) 

Apply the intermediate-value theorem to the right hand side of (13). The last 
assertion (iii) always holds for bipartite graphs [3, Proposition 8.21, or we can 
directly verify (iii) by Lemma 3.1. n 

LEMMA 3.3. Let 0 be an eigenvalue of A with 8 # _t 3. The multiplicity 
of 0 in A is given by the formula 

m(e) = 12n sin2a 
1 

1+8sin2a r+1+(2ssin2~+sin2scu)/S(cu) 

where 0 = 2ficos (Y and 

with QI = X/p = ezia. 
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Proof. We first notice that 0 is also an eigenvalue of B and hence can be 
written as 8 = 2ficos (Y with 0 < (Y < 7~. Set 

i.e., 

e2-4 
‘p+x=2> (px=l. 

We shall calculate m(8) by using Proposition 2.3. 
The equation (12) is rewritten as follows: 

F,,-IV) = l {(X+l)[x+“(X2-1)+~.‘+“(/J-1)-x~“-k~I*~] 
b-d2 

-(x-~)[x+~(x”-l)-~$]}. 

K+‘( A2 - 1) + ~r’“(~2 - 1) - xp” - x’$ = 0 by Lemma 3.1(i), and so 

i.e., 

By (14) the derivatives of ‘p and X with respect to x at x = 0 satisfy 

cp’+X’=0. QI’X+(pX’=o. 

Therefore 

cpfl (+f- -X0 
V-X 

and X’=--- 
V-X’ 

Since~/(cp-~)=2(XfE”)/(X~-~~)=2/(h-~), it holds that 

29 -2x (PI== and X’==. 

(15) 

(16) 
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We rewrite the equation of Lemma 3.1(i) as follows: 

F 

d 
($.) = (A + lb + w+” [2yr+s+1 

(X-d2 
_ $+s -C#G’PS-l+2X]. (17) 

BY (16) 

F’(8) = (A + lb + lw+S 
d 

(h-l42 
A” [( P 

2 r + s + l)cp’+s+l -(r + s)r$P 

-rep’-sscp s-2xl 
= (A + l)(P + Wfs 

Wd2 
~[(‘+“){2~‘+“+‘-rp’+~-~‘-~“-l+2x} 

+ { 2cpT+S+l +scp’+rcp”+r+s--2(r+s+l)X}]. 

2vr+$+l - cprts - cpr - C$ - 1+2x = 0, since B is a root of (17), and hence it 
holds that 

F,(e)= 2(~+NP+w+” 
d 

(h43 [WtSC1 +scpr+rcp"+r+s-2(r+s+1)x], 

I.e., 

F’(8) = 2(A +w +w+S 
d 

(X-d3 
+(cpS+1-22>o+s(r#Ir+l-22>o+2(cpr+”+’-x)]. (18) 

The product of (15) and (18) is 

%1@%;(~) = 2 r+s+yA +1)(p+1) 

(x-P)4 
(x’+1-2Q4(cpS+1-22>o 

x r+ s(~‘+l--x) + 2(cprts+‘-x) 
i cps+1-2x 1 cps+1-2x . (19) 
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SUBLEMMA. It holds that 

(x’+l-2g,)(cp”+l-2x)= -2(cp+x-2)=8sin2a, 

$+1--x = -2((P+x-2) = 8 sir? ru 

cp”+l--2x I@ +1-2x12 IQYfl-2x12’ 

‘p r+p+i-X = _ (‘p9+i+xs+i-2)+(p,+x-2) 

cps+1-2x Icp”-t1-2xl” 

= 4sin2(s+l)a+4sin2(Y 

Icp”+l-22>(\2 ’ 

and 

~Irp”+1--2x~2=2 sina(s+l)cu-sin2stu+2sin21w. 

Proof. We put B in x of (17) and get 

2~‘+“+1 _ cpr+,s _ cp’-qcp”-1+2x=0. 

Solve this identity for ‘p’. Then we get 

1 QY+1--2X 
cpr= -2 Xl+l_2q’ 

Put (24) in cpr + l-2x. Then we get 

cp’t-1-2x= 
--2((P--2+x) 

xs+l-2g, . 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

If we take complex conjugates, cp and x are interchanged and so the identity 
(25) becomes (20). The identity (21) immediately follows from (25) divided by 
cpS + l-2x. By (24), we get 

r+s+1_ _ @+1-2x 
rp - 9+1-22g,’ 



BIPARTITE DISTANCE-REGULAR GRAPHS 207 

and so 

9, r+s+l -x _ cp X 
r#+1--2x - - xs+l-2g, - $+1-2x’ 

The identity (22) follows from this. For each i E h, 

2-(cp’+~~)=2-2cos2i(u=4sin~ia. (28) 

Therefore each of (20), (21), (22), (23) is expressed in terms of trigonometric 
functions. For example, 

~QY+l-2~~2=(cp”+l-2~)(x”+1-2p,) 

= 2(2- $+l- Xs+l )-(2sq+y)+2(2-q-x) 

=8sin2(s+l)a-4sin2scu+8sin2cu, 

and we get (23). This completes the proof of the Sublemma. n 

Since (X+1)(~+1)=0+3 and (h-~)~=6’-8= -8sin2a, the iden- 
tity (19) becomes 

_ r+s+ye f3) 2 

8 sin2 (Y 

r+l+ 2ssin2a+sin2sa 

S(a) 1 (27) 

with S(a) = a 1 qs + l-2x 1 2. By Proposition 2.3, 

(28) 

This together with (27) proves Lemma 3.3. n 

LEMMA 3.4. Let 6, = 3 > 8, > 0, > . . . > t&r > 0, = -3 he the eigen- 
values of A as in Lemma 3.2. Zf r > 8, then there exists some ei (2 < i < d - 2) 
such that 

(i) 8-8F=8sin2q>1, and 
(ii) m(e,) = m(f3,). 
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Proof. Since F,,(x) is manic with integer coefficients, all the Bi are 
algebraic integers. Therefore the product 

II(8- 0;) (29) 

over all the 0, algebraic conjugate to 8, is an integer. Since 8 - 19~’ = 8 sin2 (Y~ > 0 
by Lemma 3.2, the product (29) is positive and hence greater than or equal to 
1, whereas by Lemma 3.2(ii) 

8- 0: = 8sin2 a1 < Xsin’% < 1 if ~28. 

This implies that there exists some 13, algebraic conjugate to 8r such that 
8- 8: = 8sin2 (Y, > 1. Since fIi is algebraic conjugate to 6,, their multiplicities 
in A are the same, i.e., m(0,) = m( 0,). n 

LEMMA 3.5. Let 8 = 2acos (Y (0 < (Y < r) be an eigenvalue of A. Then 

(i) m(e)<12n 
sin2 (Y 

r-t1 1+8sin2ar’ 
and 

(ii) m(ej > * 
1 

4 r+l+(s+4)(3+2J3;) 
if 8sin2cw>1. 

Proof, The first assertion is trivial by Lemma 3.3. To bound m(e) from 
below, we estimate S(cu). First we observe that 

Therefore 

>a(dl+8sin2u -1)’ 

and so 

1 

S(U) G 

4(J1++1]+ 

(Ssin’. a)” 
(30) 

Replace l/S(a) in the formula of Lemma 3.3 by the inequality (30). Then we 
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m( e> 3 12n 
sin’ (Y 1 

1+8sin2a 

r+1+ 
4(2ssin2~+1)( yl+t(sin”a+lj2 

(8sin’a)” 

The right hand side of the above inequality increases with sin’ LY, and hence if 
8sin2cr>1, we get 

m(e) > 12n& 
1 

r+l+(s+4)(@+l)2’ 

which is the desired result. n 

LEMMA 3.6. Zfra 8, then 

s+4> 

Proof. Take 0, as in Lemma 3.4. Then by Lemma 3.5, 

1 

8t 
1 

sin27r/(r+1) 

and 

1 

r+l+(s+4)(3+2ds) * 

[We have used the inequality oi < r/( r + 1) in Lemma 3.2 as well.] Therefore 

1= m(ei) 

m(e,) 

Solve this inequality for s + 4. Then we get the desired result. 



210 TATSURO IT0 

BY (4)> r 3 s, and the previous lemma, 

r+4> 

i.e. 

(31) 

The right hand side of (31) increases with r + 1 and becomes greater than 1 
when r = 32. Therefore we get 

The admissible (T, s) for Lemma 3.6 are as follows: 

T 31 30 29 28 27 26 25 

r>s> 29 26 23 21 18 16 13 
(33) 

r 1 24 23 22 21 20 19 18 17 

r>s> Ill 10 8 6 5 4 2 1 

andall(r,s)with16>rrlandrbs>l. 
In order to eliminate the remaining finite cases listed in (33), we count the 

number of circuits of length 2(r + l), 2( r +2), and 2(r +3). Let 

c4 be the number of circuits of length q. (34) 

LEMMA 3.7. It holds that 

(0 C2(r_tl) =3X2’-’ X n/2(r +l), 

(ii) c2(r+2) = 
i 

3X2’ X n/2(r +2) ifs>2 

3X2’+’ Xn/2(r+2) ifs=landra2 
, and 

3X7X2’p’Xn/2(r+3) ifsa3andra4, 

tiii) C2(r+3) = 

: 

3XllX2’-rn/2(r+3) ifs=2andr>4, 

3X5X2’p1n/2(r +3) ifs=larulr>4. 

Proof. Count in two ways the number of pairs (u, C), where C is a 
circuit of length 2( r + 1) containing u. Then we get the formula (i). 

Count in two ways the number of pairs (u, C,) and triples (u, o, C,), 
where C, is a circuit of length 2( r + 2) containing u, {u, v} is an edge, and C, 
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is a circuit of length 2(r + 1) containing 0 but not U. Then we get the formula 
(ii). 

Count in two ways the number of pairs (u, C,), triples (u, 0, C,), and 
quadruples (u, 0, w, Cs), where C, is a circuit of length 2( r + 3) containing u, 
{u, U} and {u, w} are edges, C, is a circuit of length 2( T + 2) containing 0 but 
not U, and Cs is a circuit of length 2( r -t 1) containing w but not u or o. Then 
we get the formula (iii). n 

The (r, s) in (33) which satisfy the integer condition of Lemma 3.7 are 

r ) 30 23 15 12 7 6 5 4 2 1 

s 29 12 8 11 4 5,2 3 3 2,l 1 

(35) 

For (r, s) in (35), we check the feasibility condition, i.e. mu Z, and 
get the t9 which violate the feasibility. They are listed in Table 2, where 
w=‘P+x=(~‘-4)/2. 

All the equations for w are irreducible in the list. We take a primitive root 
of the cyclotomic equations for q. Those w, cp determine d2, and we can see 
from the formula for m(e) that the value of d2 is enough to determine m(0) 
(or by Proposition 8.2 of [3], it holds that m( 0) = m( - 0) for every bipartite 
graph). Those m(0) are not integers [in fact they are not even rational 
numbers, except the case (r, s) = (5,3), (6,2)], which is a contradiction. 

Thus the possible parameters are only 

r 4 2 2 1 

s 3 2 1 1 (36) 

For each of the above parameters (r, s), we shall give a brief proof of the 

TABLE 2 

(r, s) 

(573) 
(6 2) 
(6>5) 
(7*4) 

(l&11) 
(15,S) 

(23,121 
(30,29) 

e 

q+-l=O 
+1=0 

203+02-5w-l=O 
2,,04+~3-7w2-2~+5=0 

cp ‘2-l=O 

I$-l=O 

‘p ‘2-l=() 

‘p JO-l=0 
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existence and uniqueness of J?. We first observe that I? is antipodal. This is 
because Cl(v,w)>2(s+l) for all distinct v,w~A,(u) and 2(s+l)=r+s 
+l=d for (r,s) in the list (36) (if r=s, then IA,(u)l=l and there 

2.4, the intersection 
graph r’ is 

TABLE 

(ii) 2. K, = 3. K,l,,3 

I 
511,t 

1 
512, t 

(viii) 3. (Tutte’s &cage) z =(1,2,3) 
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for (r, s) = (1, l), (2, l), (2,2), (4,3), respectively. The distance-regular graph 
I?’ is uniquely determined to be K,, K,,,, 0, (Petersen’s graph) and the 
generalized 4gon (Tutte’s &age), respectively. In each case, it holds that 
g’< g = 2(r + 1). Therefore zilz?. . . z ‘F’ in Proposition 2.5 is fixed-point-free 
for every circuit of length g’. This detehines r uniquely as shown in Table 3 
(cf. [8]). In the diagrams in the table, the orientations are from one half to the 
other if r’ is bipartite and arbitrary if m = 2. The diagram for (vi) indicates 
that the identity permutation is attached to each “spoke” and the transposi- 
tion (1,2) is attached to everywhere else (cf. [3, p. 1521). 

The author wishes to acknowledge the presentation of this problem by E. 
Bannai. 
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